Fundamentos de Computação - HD

Conhecendo o disco rígido (HD)

Definição: disco rígido ou HD (Hard Disk) - dispositivo de armazenamento de dados mais usado nos computadores.

Características e funcionamento dos HDs

Surgimento

1)Um dos primeiros HDs que se tem notícia é o IBM 305 RAMAC(1956), era capaz de armazenar até 5 MB de dados (um avanço para a época) e possuía dimensões enormes: 14 x 8 polegadas. Seu preço também não era nada convidativo: o 305 RAMAC custava cerca de 30 mil dólares.
2) Ex de HD velho: disco rígido utilizado pelo Metrô de São Paulo em seus primeiros anos:


Componentes de um HD

1) caixas são seladas - armazenam os discos. Não têm nem ar internamente, pois não podem conter qualquer tipo de material que possa danificar os discos, já que estes são bastante sensíveis.
2) placa lógica (contém controladora, buffer)
a) Controladora - placa com chips responsáveis por gerencia uma série de itens do HD, como a movimentação dos discos e das cabeças de leitura/gravação (mostradas adiante), o envio e recebimento de dados entre os discos e o computador, e até rotinas de segurança.
b) Buffer - Cabe a ele a tarefa de armazenar pequenas quantidades de dados durante a comunicação com o computador. Como esse chip consegue lidar com os dados de maneira mais rápida que os discos rígidos, ele agiliza o processo de transferência de informações. tamanhos médios de 2 MB e 8 MB.
3) Componentes Internos: Estes são detalhados logo abaixo da imagem:

a) Pratos e motor: Os pratos são os discos onde os dados são armazenados. Eles são feitos de alumínio (ou de um tipo de cristal) recoberto por um material magnético e por uma camada de material protetor. Quanto mais trabalhado for o material magnético (ou seja, quanto mais denso), maior é a capacidade de armazenamento do disco. Note que os HDs com grande capacidade contam com mais de um prato, um sobre o outro. Eles ficam posicionados sob um motor responsável por fazê-los girar. Velocidades comuns: 7.200 rpm e 10.000 rpm;

b) Cabeça e braço: os HDs contam com um dispositivo muito pequeno chamado cabeça (bou cabeçote) de leitura e gravação. Trata-se de um item de tamanho reduzido que contém uma bobina que utiliza impulsos magnéticos para manipular as moléculas da superfície do disco, e assim gravar dados. Há uma cabeça para cada lado dos discos. Esse item é localizado na ponta de um dispositivo denominado braço, que tem a função de posicionar os cabeçotes sob a superfície dos pratos. Olhando por cima, tem-se a impressão de que a cabeça de leitura e gravação toca nos discos, mas isso não ocorre. Na verdade, a distância entre ambos é extremamente pequena. A "comunicação" ocorre pelos já citados impulsos magnéticos;

c) Atuador: também chamado de voice coil, o atuador é o responsável por mover o braço sob a superfície dos pratos, e assim permitir que as cabeças façam o seu trabalho. Para que a movimentação ocorra, o atuador contém em seu interior uma bobina que é "induzida" por imãs.

Gravação e leitura de dados

A superfície de gravação dos pratos é composta de materiais sensíveis ao magnetismo (geralmente, óxido de ferro). O cabeçote de leitura e gravação manipula as moléculas desse material através de seus pólos. Para isso, a polaridade das cabeças muda numa freqüência muito alta: quando está positiva, atrai o pólo negativo das moléculas e vice-versa. De acordo com essa polaridade é que são gravados os bits (0 e 1). No processo de leitura de dados, o cabeçote simplesmente "lê" o campo magnético gerado pelas moléculas e gera uma corrente elétrica correspondente, cuja variação é analisada pela controladora do HD para determinar os bits.

Para a "ordenação" dos dados no HD, é utilizado um esquema conhecido como "geometria dos discos". Nele, o disco é "dividido" em cilindros, trilhas e setores:

Ilustração de geometria de disco

Definições:

a) Trilhas: são círculos que começam no centro do disco e vão até a sua borda, como se estivesse um dentro do outro. Essas trilhas são numeradas de dentro para fora, isto é, a trilha que fica mais próxima ao centro é denominada trilha 0, a trilha que vem em seguida é chamada trilha 1 e assim por diante, até chegar à trilha da borda.
b) Setor: Dividisão de tamanho regular da trilha. Possui uma determinada capacidade de armazenamento (geralmente, 512 bytes). É a menor porção endereçavel do disco
c) Cilindro: é a posição das cabeças sobre as mesmas trilhas de seus respectivos discos.
d) Clusters: vários setores (logicamente) contíguos
e) Seeking: movimentação da cabeça de R/W - parte mais lenta da operação.
f) interleaving: forma de org. de setores em trilha onde eles são distribuidos em setores lógicos diferentes.
g) Extents: caso seja necessário + cluster pro msm arq. e estiver disponível me seqüência...
h) Fragmentação - Frag. interna - perda de espaço por não fragmentação do arquivo (setor tem 512kb e o arquivo 300kb)...
i) formatação: preparar os discos para receber dados.
i.1)Física: "divisão" dos discos em trilhas e setores(feito na fábrica)
i.2)Lógica: aplicação de um sistema de arquivos apropriado a cada sistema operacional(FAT, NTFS,Ext3, ReiserFS)

Os HDs são conectados ao computador através de interfaces capazes de transmitir os dados entre um e outro de maneira segura e eficiente. Há várias tecnologias para isso, sendo as mais comuns os padrões IDE, SCSI e, mais recentemente, SATA.

A interface IDE (Intelligent Drive Electronics ou Integrated Drive Electronics) também é conhecida como ATA (Advanced Technology Attachment) ou, ainda, PATA (Parallel Advanced Technology Attachment). Trata-se de um padrão que chegou para valer ao mercado na época da antiga linha de processadores 386.

Como a popularização desse padrão, as placas-mãe passaram a oferecer dois conectores IDE (IDE 0 ou primário e IDE 1 ou secundário), sendo que cada um é capaz de conectar até dois dispositivos. Essa conexão é feita ao HD (e a outros dispositivos compatíveis com a interface) por meio de um cabo flat (flat cable) de 40 vias (foto abaixo). Posteriormente, chegou ao mercado um cabo flat de 80 vias, cujas vias extras servem para evitar a perda de dados causada por ruídos (interferência).

Em relação às interfaces SCSI e SATA, elas possuem matérias exclusivas aqui no InfoWester. Clique nos seguintes links para acessá-las:

- Interface SCSI;
- Interface SATA.
Cabo flat de 40 vias. Note que ele possui dois conectores
Tecnologias ATAPI e EIDE

Na interface IDE, também é possível conectar outros dispositivos, como unidades de CD/DVD e zipdrives. Para que isso ocorra, é utilizado um padrão conhecido como ATAPI (Advanced Technology Attachment Packet Interface), que funciona como uma espécie de extensão para tornar a interface IDE compatível com os dispositivos mencionados. Vale frisar que o próprio computador, através de seu BIOS e/ou do chipset da placa-mãe, reconhece que tipo de aparelho está conectado em suas entradas IDE e utiliza a tecnologia correspondente (ATAPI para unidades de CD/DVD e outros, ATA para discos rígidos).

Como já dito, cada interface IDE de uma placa-mãe pode trabalhar com até dois dispositivos simultaneamente, totalizando quatro. Isso é possível graças a EIDE (Enhanced IDE), uma tecnologia que surgiu para aumentar a velocidade de transmissão de dados dos discos rígidos e, claro, permitir a conexão de dois dispositivos em cada IDE.
Entradas IDE de uma placa-mãe
Conectores IDE em uma placa-mãe

É importante frisar que a tecnologia EIDE tem dois concorrentes de peso: os já mencionados padrões SCSI e SATA. O primeiro é bem mais eficiente, porém muito mais caro. Por esta razão, o padrão SCSI só é usado em aplicações que necessitam de alta performance (como servidores, por exemplo). A tecnologia SATA é que veio para tomar o seu lugar, mas como o padrão IDE está no mercado há muito tempo, demorará para cair completamente em desuso.
Tecnologias DMA e UDMA

Antigamente, somente o processador tinha acesso direto aos dados da memória RAM. Com isso, se qualquer outro componente do computador precisasse de algo na memória, teria que fazer esse acesso por intermédio do processador. Com os HDs não era diferente e, como conseqüência, havia um certo "desperdício" dos recursos de processamento. A solução não demorou muito a aparecer. Foi criada uma tecnologia chamada DMA (Direct Memory Access). Como o próprio nome diz, essa tecnologia tornou possível o acesso direto à memória pelo HD ou pelos dispositivos que usam a interface IDE, sem necessidade do "auxílio" do processador.

Quando o DMA não está em uso, normalmente é usado um esquema de transferência de dados conhecido como modo PIO (Programmed I/O), onde, grossamente falando, o processador executa a transferência de dados entre o HD e a memória RAM. Cada modo PIO existente trabalha com uma taxa distinta de transferência de dados, conforme mostra a seguinte tabela:

Modo PIO
Taxa de transferência
Modo 0 3,3 MB/s
Modo 1 5,2 MB/s
Modo 2 8,3 MB/s
Modo 3 11,1 MB/s
Modo 4 16,7 MB/s
Modo 5 20 MB/s


É importante frisar que os HDs IDE mais recentes trabalham com um padrão conhecido como Ultra-DMA (UDMA). Essa tecnologia permite a transferência de dados em uma taxa de, pelo menos, 33,3 MB/s (megabytes por segundo). O padrão UDMA não funciona se somente for suportada pelo HD. É necessário que a placa-mãe também a suporte (através de seu chipset), caso contrário, o HD trabalhará com uma taxa de transferência mais baixa. Veja o porquê: existe 4 tipos básicos de Ultra-DMA: UDMA 33, UDMA 66, UDMA 100 e UDMA 133. Os números nestas siglas representam a quantidade de megabytes transferível por segundo. Assim, o UDMA 33 transmite ao computador dados em até 33 MB/s. O UDMA 66 faz o mesmo em até 66 MB/s, e assim por diante. Agora, para exemplificar, imagine que você instalou um HD UDMA 133 em seu computador. No entanto, a placa-mãe só suporta UDMA de 100 MB/s. Isso não significa que seu HD vai ficar inoperante. O que vai acontecer é que seu computador somente trabalhará com o HD na taxa de transferência de até 100 MB/s e não na taxa de 133 MB/s.

Capacidade real de armazenamento

Os fabricantes de discos rígidos aumentam a capacidade de armazenamento de seus produtos constantemente. Todavia, não é raro uma pessoa comprar um HD e constatar que o dispositivo tem alguns gigabytes a menos do que anunciado. Será que o vendedor lhe enganou? Será que a formatação foi feita de maneira errada? Será que o HD está com algum problema? Na verdade, não.

O que acontece é que os HDs consideram 1 gigabyte com sendo igual a 1000 megabytes, assim como consideram 1 megabyte com sendo igual a 1000 kilobytes, e assim por diante. Os sistemas operacionais, por sua vez, consideram 1 gigabyte como sendo igual a 1024 megabytes, e assim se segue. Por conta dessa diferença, um HD de 80 GB, por exemplo, vai ter, na verdade, 74,53 GB de capacidade ao sistema operacional. Um HD de 200 GB vai ter, por sua vez, 186,26 GB.

Portanto, ao notar essa diferença, não se preocupe, seu disco rígido não está com problemas. Tudo não passa de diferenças entre as empresas envolvidas sobre qual medida utilizar.

HDs externos

É possível encontrar vários tipos de HDs no mercado, desde os conhecidos discos rígidos para uso doméstico (ou seja, para PCs), passando por dispositivos mais sofisticados voltados ao mercado profissional (ou seja, para servidores), chegando aos cada vez mais populares HDs externos.

HD externo IomegaO que é um HD externo? Simplesmente um HD que você levar para cima e para baixo, e conecta ao computador apenas quando precisa. Para isso, pode-se usar, por exemplo, portas USB, FireWire e até SATA externo, tudo depende do modelo que você escolher.

O HD externo é útil para quando se tem grandes quantidades de dados para transportar ou para fazer backup (cópia de segurança de seus arquivos). Do contrário, é preferível utilizar pendrives, DVDs regraváveis ou outro dispositivo de armazenamento com melhor relação custo-benefício. Isso porque os HDs externos são mais caros e costumam ser pesados (exceto os modelos de tamanho reduzido). Além disso, devem ser transportados com cuidado, para evitar danos.

A imagem ao lado mostra um HD externo da empresa Iomega, uma das mais conhecidas fabricantes desse ramo.

Finalizando

O HD já passou por diversas mudanças desde o seu início. Só para dar um exemplo de evolução, os HDs mais antigos tinham um problema que, se não tivesse sido resolvido, talvez deixaria os discos rígidos atrasados em relação ao progresso dos mais componentes de um computador: o motor de movimentação das cabeças de leitura e gravação era lento. Isso porque quando as cabeças precisavam ir de um cilindro a outro, o fazia de um em um até chegar ao destino. Hoje em dia, as cabeças vão diretamente ao cilindro requisitado.

Para fechar este artigo, uma pequena curiosidade: quando a IBM lançou o HD 3340, houve um versão com capacidade de 60 MB, sendo que 30 MB eram fixos e os outros 30 MB eram removíveis. Essa característica fez este HD receber o apelido de "30-30". No entanto, existia um rifle chamado Winchester 30-30 e, logo, a comparação entre os dois foi inevitável. Como conseqüência, o HD passou a ser chamado também de Winchester, nome que dificilmente é usado hoje em dia, mas que algumas pessoas pronunciavam sem saber exatamente do que se tratava.

original: http://www.infowester.com/hds2.php

Comentários

Postagens mais visitadas deste blog

Redação Ti Nota 10 - Klauss

Prova Discursiva nota 10 - Banca Cespe

Portugues - Orações